Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Papadopoulos, Alessandro V. (Ed.)Temporal isolation is one of the most significant challenges that must be addressed before Multi-Processor Systems-on-Chip (MPSoCs) can be widely adopted in mixed-criticality systems with both time-sensitive real-time (RT) applications and performance-oriented non-real-time (NRT) applications. Specifically, the main memory subsystem is one of the most prevalent causes of interference, performance degradation and loss of isolation. Existing memory bandwidth regulation mechanisms use static, dynamic, or predictive DRAM bandwidth management techniques to restore the execution time of an application under contention as close as possible to the execution time in isolation. In this paper, we propose a novel distribution-driven regulation whose goal is to achieve a timeliness objective formulated as a constraint on the probability of meeting a certain target execution time for the RT applications. Using existing interconnect-level Performance Monitoring Units (PMU), we can observe the Cumulative Distribution Function (CDF) of the per-request memory latency. Regulation is then triggered to enforce first-order stochastical dominance with respect to a desired reference. Consequently, it is possible to enforce that the overall observed execution time random variable is dominated by the reference execution time. The mechanism requires no prior information of the contending application and treats the DRAM subsystem as a black box. We provide a full-stack implementation of our mechanism on a Commercial Off-The-Shelf (COTS) platform (Xilinx Ultrascale+ MPSoC), evaluate it using real and synthetic benchmarks, experimentally validate that the timeliness objectives are met for the RT applications, and demonstrate that it is able to provide 2.2x more overall throughput for NRT applications compared to DRAM bandwidth management-based regulation approaches.more » « less
-
Papadopoulos, Alessandro V. (Ed.)The correctness of safety-critical systems depends on both their logical and temporal behavior. Control-flow integrity (CFI) is a well-established and understood technique to safeguard the logical flow of safety-critical applications. But unfortunately, no established methodologies exist for the complementary problem of detecting violations of control flow timeliness. Worse yet, the latter dimension, which we term Timely Progress Integrity (TPI), is increasingly more jeopardized as the complexity of our embedded systems continues to soar. As key resources of the memory hierarchy become shared by several CPUs and accelerators, they become hard-to-analyze performance bottlenecks. And the precise interplay between software and hardware components becomes hard to predict and reason about. How to restore control over timely progress integrity? We postulate that the first stepping stone toward TPI is to develop methodologies for Timely Progress Assessment (TPA). TPA refers to the ability of a system to live-monitor the positive/negative slack - with respect to a known reference - at key milestones throughout an application’s lifespan. In this paper, we propose one such methodology that goes under the name of Milestone-Based Timely Progress Assessment or MB-TPA, for short. Among the key design principles of MB-TPA is the ability to operate on black-box binary executables with near-zero time overhead and implementable on commercial platforms. To prove its feasibility and effectiveness, we propose and evaluate a full-stack implementation called Timely Progress Assessment with 0 Overhead (TPAw0v). We demonstrate its capability in providing live TPA for complex vision applications while introducing less than 0.6% time overhead for applications under test. Finally, we demonstrate one use case where TPA information is used to restore TPI in the presence of temporal interference over shared memory resources.more » « less
-
Papadopoulos, Alessandro V. (Ed.)Real-time locking protocols are typically designed to reduce any priority-inversion blocking (pi-blocking) a task may incur while waiting to access a shared resource. For the multiprocessor case, a number of such protocols have been developed that ensure asymptotically optimal pi-blocking bounds under job-level fixed-priority scheduling. Unfortunately, no optimal multiprocessor real-time locking protocols are known that ensure tight pi-blocking bounds under any scheduler. This paper presents the first such protocols. Specifically, protocols are presented for mutual exclusion, reader-writer synchronization, and k-exclusion that are optimal under first-in-first-out (FIFO) scheduling when schedulability analysis treats suspension times as computation. Experiments are presented that demonstrate the effectiveness of these protocols.more » « less
-
Papadopoulos, Alessandro V (Ed.)The rigid timing requirement of real-time applications biases the analysis to focus on the worst-case performances. Such a focus cannot provide enough information to optimize the system’s typical resource and energy consumption. In this work, we study the real-time scheduling of parallel tasks on a multi-speed heterogeneous platform while minimizing their typical-case CPU energy consumption. Dynamic power management (DPM) policy is integrated to determine the minimum number of cores required for each task while guaranteeing worst-case execution requirements (under all circumstances). A Hungarian Algorithm-based task partitioning technique is proposed for clustered multi-core platforms, where all cores within the same cluster run at the same speed at any time, while different clusters may run at different speeds. To our knowledge, this is the first work aiming to minimize typical-case CPU energy consumption (while ensuring the worst-case timing correctness for all tasks under any execution condition) through DPM for parallel tasks in a clustered platform. We demonstrate the effectiveness of the proposed approach with existing power management techniques using experimental results and simulations. The experimental results conducted on the Intel Xeon 2680 v3 12-core platform show around 7%-30% additional energy savings.more » « less
An official website of the United States government
